This binomial CDF table has the most common probabilities for number of trials n. This binomial cumulative distribution function (CDF) table are used in experiments were there are repeated trials, each trial is independent, two possible outcomes, the outcome probability remains constant on any given trial.
n | x | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.9900 | 0.9800 | 0.9700 | 0.9600 | 0.9500 | 0.9400 | 0.9300 | 0.9200 | 0.9100 |
1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
2 | 0 | 0.9801 | 0.9604 | 0.9409 | 0.9216 | 0.9025 | 0.8836 | 0.8649 | 0.8464 | 0.8281 |
1 | 0.9999 | 0.9996 | 0.9991 | 0.9984 | 0.9975 | 0.9964 | 0.9951 | 0.9936 | 0.9919 | |
2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
3 | 0 | 0.9703 | 0.9412 | 0.9127 | 0.8847 | 0.8574 | 0.8306 | 0.8044 | 0.7787 | 0.7536 |
1 | 0.9997 | 0.9988 | 0.9974 | 0.9953 | 0.9928 | 0.9896 | 0.9860 | 0.9818 | 0.9772 | |
2 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9999 | 0.9998 | 0.9997 | 0.9995 | 0.9993 | |
3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
4 | 0 | 0.9606 | 0.9224 | 0.8853 | 0.8493 | 0.8145 | 0.7807 | 0.7481 | 0.7164 | 0.6857 |
1 | 0.9994 | 0.9977 | 0.9948 | 0.9909 | 0.9860 | 0.9801 | 0.9733 | 0.9656 | 0.9570 | |
2 | 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9995 | 0.9992 | 0.9987 | 0.9981 | 0.9973 | |
3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | |
4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
5 | 0 | 0.9510 | 0.9039 | 0.8587 | 0.8154 | 0.7738 | 0.7339 | 0.6957 | 0.6591 | 0.6240 |
1 | 0.9990 | 0.9962 | 0.9915 | 0.9852 | 0.9774 | 0.9681 | 0.9575 | 0.9456 | 0.9326 | |
2 | 1.0000 | 0.9999 | 0.9997 | 0.9994 | 0.9988 | 0.9980 | 0.9969 | 0.9955 | 0.9937 | |
3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9999 | 0.9998 | 0.9997 | |
4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
n | x | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0 | 0.9000 | 0.8500 | 0.8000 | 0.7500 | 0.7000 | 0.6500 | 0.6000 | 0.5500 | 0.5000 |
1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
2 | 0 | 0.8100 | 0.7225 | 0.6400 | 0.5625 | 0.4900 | 0.4225 | 0.3600 | 0.3025 | 0.2500 |
1 | 0.9900 | 0.9775 | 0.9600 | 0.9375 | 0.9100 | 0.8775 | 0.8400 | 0.7975 | 0.7500 | |
2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
3 | 0 | 0.7290 | 0.6141 | 0.5120 | 0.4219 | 0.3430 | 0.2746 | 0.2160 | 0.1664 | 0.1250 |
1 | 0.9720 | 0.9393 | 0.8960 | 0.8438 | 0.7840 | 0.7183 | 0.6480 | 0.5748 | 0.5000 | |
2 | 0.9990 | 0.9966 | 0.9920 | 0.9844 | 0.9730 | 0.9571 | 0.9360 | 0.9089 | 0.8750 | |
3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
4 | 0 | 0.6561 | 0.5220 | 0.4096 | 0.3164 | 0.2401 | 0.1785 | 0.1296 | 0.0915 | 0.0625 |
1 | 0.9477 | 0.8905 | 0.8192 | 0.7383 | 0.6517 | 0.5630 | 0.4752 | 0.3910 | 0.3125 | |
2 | 0.9963 | 0.9880 | 0.9728 | 0.9492 | 0.9163 | 0.8735 | 0.8208 | 0.7585 | 0.6875 | |
3 | 0.9999 | 0.9995 | 0.9984 | 0.9961 | 0.9919 | 0.9850 | 0.9744 | 0.9590 | 0.9375 | |
4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
5 | 0 | 0.5905 | 0.4437 | 0.3277 | 0.2373 | 0.1681 | 0.1160 | 0.0778 | 0.0503 | 0.0312 |
1 | 0.9185 | 0.8352 | 0.7373 | 0.6328 | 0.5282 | 0.4284 | 0.3370 | 0.2562 | 0.1875 | |
2 | 0.9914 | 0.9734 | 0.9421 | 0.8965 | 0.8369 | 0.7648 | 0.6826 | 0.5931 | 0.5000 | |
3 | 0.9995 | 0.9978 | 0.9933 | 0.9844 | 0.9692 | 0.9460 | 0.9130 | 0.8688 | 0.8125 | |
4 | 1.0000 | 0.9999 | 0.9997 | 0.9990 | 0.9976 | 0.9947 | 0.9898 | 0.9815 | 0.9688 |
To find the binomial probabilities of the cumulative distribution function in the table, follow the steps given below:
Step 1 : Find n, the number of trials, in the first column on the left.
Step 2 : Find the column containing p, the probability of success.
Step 3 : Find the x in the second column on the left for which you want to find F(x) = P(X ≤ x).